Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide

Identifieur interne : 006D83 ( Main/Repository ); précédent : 006D82; suivant : 006D84

Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide

Auteurs : RBID : Pascal:08-0073443

Descripteurs français

English descriptors

Abstract

Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV were performed on an epitaxial layer of (111) In2O3 with good crystallinity as established by a standard scanning probe and diffraction methods. Valence band (VB) and band gap photoemission spectra were monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different activation temperatures within the range utilized for chemiresistive gas sensors (160-450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Regular shifts of the valence band edge relative to the Fermi energy were found under gas exposures on two kinds of surface (partially reduced or partially oxidized), and are interpreted as changes of surface potential. Treatments in oxygen resulted in upward band bending (∼0.5 eV at T= 320 °C). Regardless of activation temperature, treatments in water resulted in downward band bending, but with small changes (<0.1 eV). Reduction properties of carbon monoxide were observed only at high temperatures of T > 370 °C. At temperatures of 160 and 250 °C unusual "oxidizing" behavior of CO was observed with upward band bending of ∼0.7 eV (160 °C). Oxidizing and reducing effects of the gas interactions with the (111) In2O3 surface in all cases were accompanied by a corresponding behavior, i.e., a decrease or increase in photoemission response from so-called defect states in the band gap near the top of the valence band. The increases of photoemission within a band gap with maxima at binding energies (BE) of 0.4 (O2-induced peak) and 1.0 eV (CO-induced peak) were, respectively, found for interactions with O2 and CO for low temperatures (T= 160 and 250 °C). These responses were ascribed to acceptor-like electronic levels of O2 and CO chemisorption states, respectively. A definite split of the top VB peak (BE ∼ 4.0 eV) was found under CO dosing at 160 °C. Established knowledge of the CO interaction with the (111) In2O3 surface explains earlier revealed acceptor-like behavior of In2O3 film conductivity during CO detection at operational temperatures lower than 250 °C through the formation of acceptor-like electronic levels of adsorbed CO molecules.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0073443

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Valence band and band gap photoemission study of (111) In
<sub>2</sub>
O
<sub>3</sub>
epitaxial films under interactions with oxygen, water and carbon monoxide</title>
<author>
<name sortKey="Brinzari, V" uniqKey="Brinzari V">V. Brinzari</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro-and Optoelectronics, Technical University of Moldova, Bld. Stefan cel Mare, 168</s1>
<s2>Chisinau</s2>
<s3>MDA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>Chisinau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Korotcenkov, G" uniqKey="Korotcenkov G">G. Korotcenkov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro-and Optoelectronics, Technical University of Moldova, Bld. Stefan cel Mare, 168</s1>
<s2>Chisinau</s2>
<s3>MDA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>Chisinau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, M" uniqKey="Ivanov M">M. Ivanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro-and Optoelectronics, Technical University of Moldova, Bld. Stefan cel Mare, 168</s1>
<s2>Chisinau</s2>
<s3>MDA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Moldavie</country>
<wicri:noRegion>Chisinau</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nehasil, V" uniqKey="Nehasil V">V. Nehasil</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculty of Mathematics and Physics, Charles University</s1>
<s2>Prague</s2>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matolin, V" uniqKey="Matolin V">V. Matolin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculty of Mathematics and Physics, Charles University</s1>
<s2>Prague</s2>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Masek, K" uniqKey="Masek K">K. Masek</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculty of Mathematics and Physics, Charles University</s1>
<s2>Prague</s2>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>Prague</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamei, M" uniqKey="Kamei M">M. Kamei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>National Institute for Material Science, Namiki</s1>
<s2>Tsukuba, Ibaraki</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0073443</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0073443 INIST</idno>
<idno type="RBID">Pascal:08-0073443</idno>
<idno type="wicri:Area/Main/Corpus">006F24</idno>
<idno type="wicri:Area/Main/Repository">006D83</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0039-6028</idno>
<title level="j" type="abbreviated">Surf. sci.</title>
<title level="j" type="main">Surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band bending</term>
<term>Carbon</term>
<term>Chemisorption</term>
<term>Energy gap</term>
<term>Epitaxial layers</term>
<term>Indium</term>
<term>Oxygen</term>
<term>Photoelectron spectroscopy</term>
<term>Photoemission</term>
<term>Synchrotron radiation</term>
<term>Valence bands</term>
<term>Water</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bande valence</term>
<term>Bande interdite</term>
<term>Photoémission</term>
<term>Couche épitaxique</term>
<term>Oxygène</term>
<term>Carbone</term>
<term>Indium</term>
<term>Rayonnement synchrotron</term>
<term>Spectrométrie photoélectron</term>
<term>Courbure bande</term>
<term>Chimisorption</term>
<term>Eau</term>
<term>O</term>
<term>H O</term>
<term>H2O</term>
<term>C</term>
<term>In</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Oxygène</term>
<term>Carbone</term>
<term>Eau</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV were performed on an epitaxial layer of (111) In
<sub>2</sub>
O
<sub>3</sub>
with good crystallinity as established by a standard scanning probe and diffraction methods. Valence band (VB) and band gap photoemission spectra were monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different activation temperatures within the range utilized for chemiresistive gas sensors (160-450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Regular shifts of the valence band edge relative to the Fermi energy were found under gas exposures on two kinds of surface (partially reduced or partially oxidized), and are interpreted as changes of surface potential. Treatments in oxygen resulted in upward band bending (∼0.5 eV at T= 320 °C). Regardless of activation temperature, treatments in water resulted in downward band bending, but with small changes (<0.1 eV). Reduction properties of carbon monoxide were observed only at high temperatures of T > 370 °C. At temperatures of 160 and 250 °C unusual "oxidizing" behavior of CO was observed with upward band bending of ∼0.7 eV (160 °C). Oxidizing and reducing effects of the gas interactions with the (111) In
<sub>2</sub>
O
<sub>3</sub>
surface in all cases were accompanied by a corresponding behavior, i.e., a decrease or increase in photoemission response from so-called defect states in the band gap near the top of the valence band. The increases of photoemission within a band gap with maxima at binding energies (BE) of 0.4 (O2-induced peak) and 1.0 eV (CO-induced peak) were, respectively, found for interactions with O
<sub>2</sub>
and CO for low temperatures (T= 160 and 250 °C). These responses were ascribed to acceptor-like electronic levels of O
<sub>2</sub>
and CO chemisorption states, respectively. A definite split of the top VB peak (BE ∼ 4.0 eV) was found under CO dosing at 160 °C. Established knowledge of the CO interaction with the (111) In
<sub>2</sub>
O
<sub>3</sub>
surface explains earlier revealed acceptor-like behavior of In
<sub>2</sub>
O
<sub>3</sub>
film conductivity during CO detection at operational temperatures lower than 250 °C through the formation of acceptor-like electronic levels of adsorbed CO molecules.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0039-6028</s0>
</fA01>
<fA02 i1="01">
<s0>SUSCAS</s0>
</fA02>
<fA03 i2="1">
<s0>Surf. sci.</s0>
</fA03>
<fA05>
<s2>601</s2>
</fA05>
<fA06>
<s2>23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Valence band and band gap photoemission study of (111) In
<sub>2</sub>
O
<sub>3</sub>
epitaxial films under interactions with oxygen, water and carbon monoxide</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BRINZARI (V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KOROTCENKOV (G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>IVANOV (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NEHASIL (V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MATOLIN (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MASEK (K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KAMEI (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Micro-and Optoelectronics, Technical University of Moldova, Bld. Stefan cel Mare, 168</s1>
<s2>Chisinau</s2>
<s3>MDA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculty of Mathematics and Physics, Charles University</s1>
<s2>Prague</s2>
<s3>CZE</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>National Institute for Material Science, Namiki</s1>
<s2>Tsukuba, Ibaraki</s2>
<s3>JPN</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>5585-5594</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12426</s2>
<s5>354000174277830390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0073443</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV were performed on an epitaxial layer of (111) In
<sub>2</sub>
O
<sub>3</sub>
with good crystallinity as established by a standard scanning probe and diffraction methods. Valence band (VB) and band gap photoemission spectra were monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different activation temperatures within the range utilized for chemiresistive gas sensors (160-450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Regular shifts of the valence band edge relative to the Fermi energy were found under gas exposures on two kinds of surface (partially reduced or partially oxidized), and are interpreted as changes of surface potential. Treatments in oxygen resulted in upward band bending (∼0.5 eV at T= 320 °C). Regardless of activation temperature, treatments in water resulted in downward band bending, but with small changes (<0.1 eV). Reduction properties of carbon monoxide were observed only at high temperatures of T > 370 °C. At temperatures of 160 and 250 °C unusual "oxidizing" behavior of CO was observed with upward band bending of ∼0.7 eV (160 °C). Oxidizing and reducing effects of the gas interactions with the (111) In
<sub>2</sub>
O
<sub>3</sub>
surface in all cases were accompanied by a corresponding behavior, i.e., a decrease or increase in photoemission response from so-called defect states in the band gap near the top of the valence band. The increases of photoemission within a band gap with maxima at binding energies (BE) of 0.4 (O2-induced peak) and 1.0 eV (CO-induced peak) were, respectively, found for interactions with O
<sub>2</sub>
and CO for low temperatures (T= 160 and 250 °C). These responses were ascribed to acceptor-like electronic levels of O
<sub>2</sub>
and CO chemisorption states, respectively. A definite split of the top VB peak (BE ∼ 4.0 eV) was found under CO dosing at 160 °C. Established knowledge of the CO interaction with the (111) In
<sub>2</sub>
O
<sub>3</sub>
surface explains earlier revealed acceptor-like behavior of In
<sub>2</sub>
O
<sub>3</sub>
film conductivity during CO detection at operational temperatures lower than 250 °C through the formation of acceptor-like electronic levels of adsorbed CO molecules.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photoémission</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoemission</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Rayonnement synchrotron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Synchrotron radiation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectrométrie photoélectron</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photoelectron spectroscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Courbure bande</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Band bending</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Curvatura banda</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Chimisorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Chemisorption</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Eau</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Water</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>O</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>H O</s0>
<s4>INC</s4>
<s5>33</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>H2O</s0>
<s4>INC</s4>
<s5>34</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>C</s0>
<s4>INC</s4>
<s5>35</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>36</s5>
</fC03>
<fN21>
<s1>035</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006D83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006D83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0073443
   |texte=   Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024